

Model Studies of Azide Binding to Functional Analogues of CcO

James P. Collman,* Abhishek Dey, Richard A. Decréau, and Ying Yang

Department of Chemistry, Stanford University, Stanford, California 94305

Received November 21, 2007

 N_3^- binding to a functional model of CcO is investigated in its $Fe^{3+},\,Fe^{3+}Cu^+,\,$ and $Fe^{3+}Cu^{2+}$ forms. A combination of EPR and FTIR indicates that N_3^- binds in a bridging mode in the bimetallic sites and signature N_3^- bands are identified for several forms of N_3^- binding to the site. The presence of the distal metal increases the binding affinity of $N_3^-.$ This bridging enables antiferromagnetic interaction between the two metal centers in the $Fe^{3+}Cu^{2+}$ state, which results in an EPR-silent ground state.

Cytochrome c oxidase (CcO) is the terminal electron donor to oxygen in mitochondria, reducing it to H₂O. This generates a proton gradient that drives ATP synthesis. The O₂ reduction occurs at the heterobimetallic active site of CcO consisting of a heme a_3 and a Cu_B center within 5 Å.^{2a-c} The reaction mechanism of this fundamentally important enzyme and its interactions with small molecules (e.g., N₃⁻, CO, and NO) have been a focus of major research for several decades.^{1,3} In particular, the nature of its interaction with its inhibitor N₃⁻ has been investigated using Fourier transform (FTIR), electron paramagnetic resonance (EPR), and resonance Raman techniques. 4a-c It is generally accepted that one or two N₃-'s can bind either in a bridging or in a terminal manner to the resting oxidized state of the active site (Fe³⁺Cu²⁺). However, unambiguous assignment of the spectroscopic data is generally complicated by spectroscopic features from heme a and Cu_A centers (also present in the enzyme). Furthermore, the role of the Cu_B center in N₃⁻ binding to the CcO active site and the possibility of N₃ binding to a possible mixed-valent form (i.e., Fe³⁺Cu⁺ or Fe²⁺Cu²⁺ forms of these complexes, not Fe³⁺Cu²⁺ with heme a and CuA reduced) are yet unexplored. Synthetic biomimetic model complexes provide a controlled environment for studying these key interactions that take place in a protein active site. Thus, there is a need for a systematic study of N_3^- binding to the CcO active site model that will serve as a reference for analyzing spectroscopic data obtained in protein active sites.

Several synthetic CcO models have been reported in the past decade, 5 and one of them has been used to model N_3^- binding. 6 Unfortunately, in the absence of FTIR data, the presence of multiple N_3^- -bound forms, and the lack of O_2 reduction activity of this complex, it is hard to correlate those results to the ones obtained in CcO. Recently, one synthetic model complex has been shown to have O_2 -reducing activity, under physiological conditions, comparable to the parent enzyme (Scheme 1). $^{7a-c}$ In this study, we show that this functional model can be used to investigate N_3^- binding to the CcO active site. We use EPR and FTIR techniques to characterize different modes of N_3^- binding that helps gain insight into the origin of noncompetitive inhibition of CcO by these anionic ligands. 8

The monometallic Fe^{3+} complex can be synthesized by oxidizing the Fe^{2+} complex with ferrocinum tetrafluoroborate (Fc^+) in dichloromethane (CH_2Cl_2). The mixed-valent (in the active site) $Fe^{3+}Cu^+$ state has not been well characterized in CcO^9 or in any other model systems. To It can be obtained by adding 1 equiv of Cu^{2+} to a Fe^{2+} complex in a CH_2Cl_2 solution, whereupon Fe^{II} gets oxidized to Fe^{3+} and the resulting Cu^+ binds to the distal pocket of the model (Figure S1 in the Supporting Information). It can also be synthesized by adding 1 equiv of Cu^+ to a Fe^{3+} complex. The addition

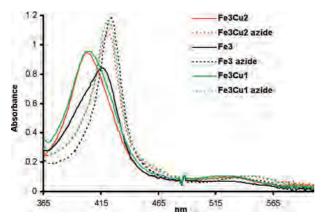
^{*} To whom correspondence should be addressed. E-mail: jpc@stanford.edu.

⁽¹⁾ Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. 1996, 96, 2889.

^{(2) (}a) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Nature 1995, 376, 660. (b) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. Science 1998, 280, 1723. (c) Fei, M. J.; Yamashita, E.; Inoue, N.; Yao, M.; Yamaguchi, H.; Tsukihara, T.; Shinzawa-Ito, K.; Nakashima, R.; Yoshikawa, S. Acta Crystallogr., Sect. D 2000, 56, 529.

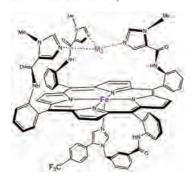
⁽³⁾ Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004. 104, 561–88.

^{(4) (}a) Vamvouka, M.; Muller, W.; Ludwig, B.; Varotsis, C. J. Phys. Chem. B 1999, 103, 3030. (b) Tsubaki, M.; Yoshikawa, S. Biochemistry 1993, 32, 174. (c) Li, W. B.; Palmer, G. Biochemistry 1993, 32, 1833.


^{(5) (}a) Liu, J.-G.; Naruta, Y.; Tani, F.; Chishiro, T.; Tachi, Y. Chem. Commun. 2004, 120. (b) Liu, J.-G.; Naruta, Y.; Tani, F. Angew. Chem., Int. Ed. 2005, 44, 1836. (c) Kim, E.; Kamaraj, K.; Galliker, B.; Rubie, N. D.; Moenne-LoCcOz, P.; Kaderli, S.; Zuberbuhler, A. D.; Karlin, K. D. Inorg. Chem. 2005, 44, 1238.

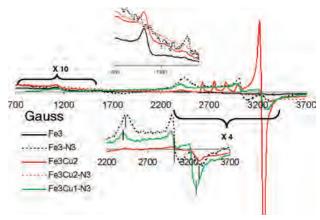
⁽⁶⁾ Dallacosta, C.; Alves, W. A., da Costa Ferreira, A. M.; Monzani, E.; Casella, L. Dalton Trans. 2007, 2197.

^{(7) (}a) Collman, J. P.; Sunderland, C. J.; Boulatov, R. *Inorg. Chem.* 2002, 41, 2282. (b) Collman, J. P.; Decréau, R. A.; Yan, Y.; Yoon, J.; Solomon, E. I. *J. Am. Chem. Soc.* 2007, 129, 5794–5795. (c) Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.-L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D. *Science* 2007, 315, 1565.


⁽⁸⁾ N₃⁻ does not bind to the fully reduced active form of CcO. Petersen, L. C. Biochim. Biophys. Acta 1977, 460, 299.

Babcock, G. T.; Vickery, L. E.; Palmer, G. J. Biol. Chem. 1978, 253, 2400

Figure 1. Absorption spectra of Fe³⁺, Fe³⁺Cu⁺, and Fe³⁺Cu²⁺ states and their N_3 ⁻-bound forms.


Scheme 1. Representation of the Functional Model Complex in its Fe^{3+} (No M2), $Fe^{3+}Cu^+$ (M2 = Cu^+), and $Fe^{3+}Cu^{2+}$ (M2 = Cu^{2+}) States (Metals Have Triflate Counterions)

of 2 equiv of Cu^{2+} to the Fe^{2+} complex or 1 equiv of Fc^+ to the $Fe^{3+}Cu^+$ complex generates the $Fe^{3+}Cu^{2+}$ complex.

Binding N_3^- to the monometallic Fe³+ porphyrin complex in CH_2Cl_2 shifts the Soret band from 415 to 424 nm, and the Q band shifts from 527 to 534 nm (Figure 1, solid black and dashed black lines). For the Fe³+Cu+ complex (Figure 1, solid green and dashed green lines), the Soret shifts from 406 to 423 nm upon N_3^- binding, while in the Fe³+Cu²+ state (Figure 1, solid blue and dashed blue lines), the Soret shifts from 404 to 422 nm. These changes in the absorption features upon N_3^- binding to Fe³+, Fe³+Cu+, and Fe³+Cu²+ states indicate that N_3^- ligates to the Fe³+ center in all three cases. In all of the above cases, the red shift in the Soret band is indicative of a change of the spin state of Fe³+ from high spin to low spin upon N_3^- binding.

Quantitative addition of N_3^- to these complexes indicates that the monometallic Fe³⁺, the mixed-valent Fe³⁺Cu⁺, and the fully oxidized Fe³⁺Cu²⁺ require 4, 2, and 1 equiv of N_3^- for complete binding, respectively. This is consistent with cooperativity between the two metals in this bimetallic active site model, where the presence of the distal metal and a subsequent increase in its charge enhance anionic ligand binding to the heme Fe.⁶ This could be due to the bridging nature of the N_3^- ligand and is evaluated below.

Figure 2. EPR spectra of the Fe³⁺, Fe³⁺Cu⁺, and Fe³⁺Cu²⁺ states and their N₃⁻-bound forms collected at 77 K in frozen CH_2Cl_2 . The upper inset shows the low-field region, and the lower inset shows the low-spin Fe³⁺ signals in the high-field region (three *g*'s are indicated by vertical lines). The small EPR signal in the Fe³⁺Cu²⁺N₃⁻ complex is due to some unconverted Fe³⁺N₃⁻.

EPR data indicate that the azide binding to the monometallic high-spin Fe³⁺ complex (Figure 2, solid black line and upper inset) leads to a low-spin Fe³⁺ center (Figure 2, dashed black line and lower inset) as suggested above by the blue shift of the Soret band. Binding of N₃⁻ to the mixed-valent Fe³⁺Cu⁺ complex, which has the same EPR signal as the monometallic Fe³⁺ complex, also leads to the growth of a new low-spin Fe³⁺ signal (Figure 2, green line and lower inset). The g values of this signal are different from those obtained from the Fe³⁺N₃⁻ complex. This implies that the azide binding to the low-spin Fe³⁺ centers in these are different. The fully oxidized Fe³⁺Cu²⁺ state of the complex has a high-spin Fe³⁺ signal at 1150 G (Figure 2, red line; 4.5 K EPR data in Figure S2 in the Supporting Information) and a Cu²⁺ signal at 2600-3400 G. Spin quantification of this Cu²⁺ signal against a standard at 77 K accounts for >95% of the sample, indicating that the Fe³⁺ and Cu²⁺ centers are magnetically uncoupled. This indicates that in the fully oxidized Fe³⁺Cu²⁺ state there is no bridging ligand between the two paramagnetic centers. 11 On the other hand, binding of N₃⁻ leads to disappearance of the Cu²⁺ and Fe³⁺ EPR signals (Figure 2, dashed red). Thus, N₃⁻ binds as a bridging ligand between the $S = \frac{1}{2}$ Fe³⁺ (indicated by the absorption and EPR of the Fe³⁺N₃⁻ complex) and $S = \frac{1}{2}$ Cu²⁺ centers. This enables antiferromagnetic coupling between these sites, leading to an EPR-silent ground state. Thus, this model successfully reproduces the bridging interactions observed in most CcO's; i.e., while in its resting Fe3+Cu2+ state, there is no bridging ligand and the heme a_3 and Cu_B can be bridged by an N₃⁻ ligand. ^{2a,b} The bridging of the two metals with a single N₃⁻ implies that, even with the lack of crystallographic data, it is safe to conclude that the distances between the two metals in this model must be \sim 6 Å as observed in the CcO active

FTIR has been used extensively to study the interaction of N_3^- with ferric porphyrin models. ¹⁰ The FTIR of the N_3^- bound Fe³⁺ complex shows a N_3^- asymmetric stretch at 2010 cm⁻¹ (Figure 3, blue line), which corresponds to a low-spin

^{(10) (}a) Byers, W.; Cossham, J. A.; Edwards, J. O.; Gordon, A. T.; Jones, J. G.; Kenny, E. T. P.; Mahmood, A.; McKnight, J.; Sweigart, D. A.; et al. *Inorg. Chem.* 1986, 25, 4767. (b) Neya, S.; Hada, S.; Funasaki, N. I.; Umemura, J.; Takenaka, T. *Biochim. Biophys. Acta* 1985, 827, 157.

⁽¹¹⁾ EPR on the fully oxidized Fe³⁺Cu²⁺ species obtained in wet CH₂Cl₂ also shows the same EPR, indicating the lack of a bridging ligand.

COMMUNICATION

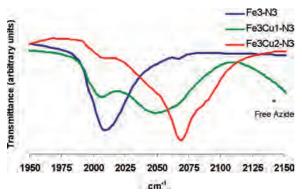


Figure 3. FTIR spectrum of the azide-bound complexes of the Fe³⁺, $Fe^{3+}Cu^{+}$, and $Fe^{3+}Cu^{2+}$ complexes (Y axis arbitrarily scaled). The shoulder around 2010 cm⁻¹ in both the Fe³⁺Cu⁺ and Fe³⁺Cu²⁺N₃⁻ complexes is due to some unconverted Fe³⁺N₃⁻ (Figure S4 in the Supporting Informa-

Fe³⁺N₃⁻ species, as indicated by EPR data. Using a single N^{15} -substituted N_3^- (i.e., $^{15}NNN^-$; Figure S3 in the Supporting Information), two bands are observed at 1990 and 1998 cm⁻¹. ^{4a,c,12} N₃ binding to the mixed-valent Fe³⁺Cu⁺ complex shows a major IR band at 2048 cm⁻¹ (Figure 3, green line). This band is 38 cm⁻¹ shifted relative to the N₃⁻ band in the Fe³⁺N₃⁻ complex. This is consistent with a bridging N₃⁻ between the Fe³⁺ and Cu⁺ centers where more electron density is shifted from its N-N π^* -type highest occupied molecular orbitals. This also parallels the small differences in the g values in the EPR spectra of the $Fe^{3+}N_3^$ complex and the mixed-valent Fe³⁺Cu⁺N₃⁻ complex. With N¹⁵-substituted azide, this 2048 cm⁻¹ shifts to 2033 cm⁻¹ (Figure S3 in the Supporting Information). The $\nu_{\rm assym}$ are further blue-shifted to 2068 cm⁻¹ with a shoulder at 2090 cm⁻¹ in the fully oxidized Fe³⁺Cu²⁺N₃⁻ complex (Figure 3, red line), where, from EPR, N₃⁻ bridges the Fe³⁺ and Cu²⁺ centers. With ¹⁵N₃⁻, the 2068 cm⁻¹ band shifts to 2054 and 2063 cm⁻¹ and the 2090 cm⁻¹ shoulder shifts to 2083 cm⁻¹ (Figure S3 in the Supporting Information).

In summary, the biomimetic models studied here indicate that N₃⁻ can bind in the Fe³⁺Cu⁺ (mixed-valent) as well as Fe³⁺Cu²⁺ (resting oxidized) states of the CcO active site. The presence of the distal metal increases the binding affinity for N_3^- because of its bridging interaction. This enhances N₃⁻ interaction with the Fe³⁺Cu⁺ and Fe³⁺Cu²⁺ states, making it an efficient inhibitor of CcO. This bridging between the metals results in an antiferromagnetically coupled ground state in the fully oxidized state of the active site. The terminal N₃⁻ binding is characterized by an IR vibration at 2010 cm⁻¹, while the bridging N₃⁻ is characterized by vibrations at 2048 and 2068 cm⁻¹ for the mixedvalent and fully oxidized states, respectively. These results should provide benchmark features for the analysis of FTIR data obtained in a CcO active site.

Acknowledgment. This research has been funded by the NIH under Grants 5R01 GM-17880-35 and 5RO1 GM69658-4. Somdatta Ghosh and Prof. E. I. Solomon are acknowledged for their help in EPR data collection. R.A.D. is thankful for a Lavoisier Fellowship. Dr. A. Hosseini is thanked for helpful discussions.

Supporting Information Available: The 4.5 K EPR spectra of the Fe³⁺ complexes, the kinetic traces of the distal metal binding, and the FTIR data in solution and with ¹⁵NNN azide. This material is available free of charge via the Internet at http://pubs.acs.org.

IC702294N

⁽¹²⁾ A single 15 N-substituted azide should give rise to two ν_{assym} modes of N₃⁻ because it could bind with either the ¹⁵N or ¹⁴N atom of the azide.