Model Studies of Azide Binding to Functional Analogues of CcO

James P. Collman,* **Abhishek Dey**, **Richard A. Decréau**, **and Ying Yang**

Department of Chemistry, Stanford University, Stanford, California 94305

Received November 21, 2007

 N_3 ⁻ binding to a functional model of CcO is investigated in its Fe³⁺, Fe³⁺Cu⁺, and Fe³⁺Cu²⁺ forms. A combination of EPR and FTIR indicates that N_3 ⁻ binds in a bridging mode in the bimetallic sites and signature N_3^- bands are identified for several forms of N_3 ⁻ binding to the site. The presence of the distal metal increases the binding affinity of N_3^- . This bridging enables antiferromagnetic interaction between the two metal centers in the $Fe³⁺Cu²⁺$ state, which results in an EPR-silent ground state.

Cytochrome c oxidase (CcO) is the terminal electron donor to oxygen in mitochondria, reducing it to $H₂O$. This generates a proton gradient that drives ATP synthesis.¹ The O_2 reduction occurs at the heterobimetallic active site of CcO consisting of a heme a_3 and a Cu_B center within 5 Å.^{2a–c} The reaction mechanism of this fundamentally important enzyme and its interactions with small molecules (e.g., N_3 ⁻, CO, and NO) have been a focus of major research for several decades.1,3 In particular, the nature of its interaction with its inhibitor N_3 ⁻ has been investigated using Fourier transform (FTIR), electron paramagnetic resonance (EPR), and resonance Raman techniques.4a–c It is generally accepted that one or two N_3 ⁻'s can bind either in a bridging or in a terminal manner to the resting oxidized state of the active site $(Fe³⁺Cu²⁺)$. However, unambiguous assignment of the spectroscopic data is generally complicated by spectroscopic features from heme a and Cu_A centers (also present in the enzyme). Furthermore, the role of the Cu_B center in N_3 ⁻ binding to the CcO active site and the possibility of N_3 ⁻ binding to a possible mixed-valent form (i.e., $Fe^{3+}Cu^{+}$ or $Fe^{2+}Cu^{2+}$ forms of these complexes, not $Fe^{3+}Cu^{2+}$ with heme

To whom correspondence should be addressed. E-mail: jpc@stanford.edu.

(1) Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. 1996, 96, 2889.

a and CuA reduced) are yet unexplored. Synthetic biomimetic model complexes provide a controlled environment for studying these key interactions that take place in a protein active site. Thus, there is a need for a systematic study of N_3 ⁻ binding to the CcO active site model that will serve as a reference for analyzing spectroscopic data obtained in protein active sites.

Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 2916-²⁹¹⁸

Inorganic Chemi

Several synthetic CcO models have been reported in the past decade,⁵ and one of them has been used to model N_3 ⁻ binding.⁶ Unfortunately, in the absence of FTIR data, the presence of multiple N_3 ⁻-bound forms, and the lack of O_2 reduction activity of this complex, it is hard to correlate those results to the ones obtained in CcO. Recently, one synthetic model complex has been shown to have O_2 -reducing activity, under physiological conditions, comparable to the parent enzyme (Scheme 1).^{7a–c} In this study, we show that this functional model can be used to investigate N_3 ⁻ binding to the CcO active site. We use EPR and FTIR techniques to characterize different modes of N_3 ⁻ binding that helps gain insight into the origin of noncompetitive inhibition of CcO by these anionic ligands.⁸

The monometallic $Fe³⁺$ complex can be synthesized by oxidizing the $Fe²⁺$ complex with ferrocinum tetrafluoroborate $(Fe⁺)$ in dichloromethane (CH_2Cl_2) . The mixed-valent (in the active site) $Fe^{3+}Cu^{+}$ state has not been well characterized in $CcO⁹$ or in any other model systems.^{7b} It can be obtained by adding 1 equiv of Cu^{2+} to a Fe²⁺ complex in a CH_2Cl_2 solution, whereupon Fe^{II} gets oxidized to Fe^{3+} and the resulting Cu⁺ binds to the distal pocket of the model (Figure S1 in the Supporting Information). It can also be synthesized by adding 1 equiv of Cu^+ to a Fe³⁺ complex. The addition

2916 Inorganic Chemistry, Vol. 47, No. 8, 2008 10.1021/ic702294n CCC: \$40.75 [©] 2008 American Chemical Society Published on Web 03/25/2008

⁽¹⁾ Ferguson-Miller, S.; Babcock, G. T. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 2889. (2) (a) Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. *Nature* **¹⁹⁹⁵**, *376*, 660. (b) Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M. J.; Libeu, C. P.; Mizushima, T.; Yamaguchi, H.; Tomizaki, T.; Tsukihara, T. *Science* **1998**, *280*, 1723. (c) Fei, M. J.; Yamashita, E.; Inoue, N.; Yao, M.; Yamaguchi, H.; Tsukihara, T.; Shinzawa-Ito, K.; Nakashima, R.; Yoshikawa, S. *Acta Crystallogr., Sect. D* **2000**, *56*, 529.

⁽³⁾ Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. *Chem. Re*V*.* **2004**, *104*, 561–88.

^{(4) (}a) Vamvouka, M.; Muller, W.; Ludwig, B.; Varotsis, C. *J. Phys. Chem. B* **1999**, *103*, 3030. (b) Tsubaki, M.; Yoshikawa, S. *Biochemistry* **1993**, *32*, 174. (c) Li, W. B.; Palmer, G. *Biochemistry* **1993**, *32*, 1833.

^{(5) (}a) Liu, J.-G.; Naruta, Y.; Tani, F.; Chishiro, T.; Tachi, Y. *Chem. Commun.* **2004**, 120. (b) Liu, J.-G.; Naruta, Y.; Tani, F. *Angew. Chem., Int. Ed.* **2005**, *44*, 1836. (c) Kim, E.; Kamaraj, K.; Galliker, B.; Rubie, N. D.; Moenne-LoCcOz, P.; Kaderli, S.; Zuberbuhler, A. D.; Karlin, K. D. *Inorg. Chem.* **2005**, *44*, 1238.

⁽⁶⁾ Dallacosta, C.; Alves, W. A.; da Costa Ferreira, A. M.; Monzani, E.; Casella, L. *Dalton Trans.* **2007**, 2197.

^{(7) (}a) Collman, J. P.; Sunderland, C. J.; Boulatov, R. *Inorg. Chem.* **2002**, *41*, 2282. (b) Collman, J. P.; Decréau, R. A.; Yan, Y.; Yoon, J.; Solomon, E. I. *J. Am. Chem. Soc.* **2007**, *129*, 5794–5795. (c) Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.-L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D. *Science* **2007**, *315*, 1565.

 (8) N₃⁻ does not bind to the fully reduced active form of CcO. Petersen, L. C. *Biochim. Biophys. Acta* **1977**, *460*, 299.

⁽⁹⁾ Babcock, G. T.; Vickery, L. E.; Palmer, G. *J. Biol. Chem.* **1978**, *253*, 2400

COMMUNICATION

Figure 1. Absorption spectra of Fe^{3+} , $Fe^{3+}Cu^+$, and $Fe^{3+}Cu^{2+}$ states and their N_3 ⁻-bound forms.

Scheme 1. Representation of the Functional Model Complex in its Fe³⁺ (No M2), Fe³⁺Cu⁺ (M2 = Cu⁺), and Fe³⁺Cu²⁺ (M2 = Cu²⁺) States (Metals Have Triflate Counterions)

of 2 equiv of Cu^{2+} to the Fe²⁺ complex or 1 equiv of Fc⁺ to the Fe³⁺Cu⁺ complex generates the Fe³⁺Cu²⁺ complex.

Binding N_3 ⁻ to the monometallic Fe^{3+} porphyrin complex in CH_2Cl_2 shifts the Soret band from 415 to 424 nm, and the Q band shifts from 527 to 534 nm (Figure 1, solid black and dashed black lines). For the $Fe^{3+}Cu^{+}$ complex (Figure 1, solid green and dashed green lines), the Soret shifts from 406 to 423 nm upon N_3 ⁻ binding, while in the Fe³⁺Cu²⁺ state (Figure 1, solid blue and dashed blue lines), the Soret shifts from 404 to 422 nm. These changes in the absorption features upon N_3 ⁻ binding to Fe^{3+} , $Fe^{3+}Cu^4$, and $Fe^{3+}Cu^{2+}$ states indicate that N_3 ⁻ ligates to the Fe³⁺ center in all three cases. In all of the above cases, the red shift in the Soret band is indicative of a change of the spin state of $Fe³⁺$ from high spin to low spin upon N_3 ⁻ binding.^{6,10}

Quantitative addition of N_3 ⁻ to these complexes indicates that the monometallic Fe³⁺, the mixed-valent Fe³⁺Cu⁺, and the fully oxidized $Fe^{3+}Cu^{2+}$ require 4, 2, and 1 equiv of $N_3^$ for complete binding, respectively. This is consistent with cooperativity between the two metals in this bimetallic active site model, where the presence of the distal metal and a subsequent increase in its charge enhance anionic ligand binding to the heme Fe.⁶ This could be due to the bridging nature of the N_3 ⁻ ligand and is evaluated below.

Figure 2. EPR spectra of the Fe³⁺, Fe³⁺Cu⁺, and Fe³⁺Cu²⁺ states and their N_3 ⁻-bound forms collected at 77 K in frozen CH_2Cl_2 . The upper inset shows the low-field region, and the lower inset shows the low-spin $Fe³⁺$ signals in the high-field region (three *g*'s are indicated by vertical lines). The small EPR signal in the $Fe^{3+}Cu^{2+}N_3^-$ complex is due to some unconverted $Fe^{3+}N_3^-$.

EPR data indicate that the azide binding to the monometallic high-spin Fe³⁺ complex (Figure 2, solid black line and upper inset) leads to a low-spin $Fe³⁺$ center (Figure 2, dashed black line and lower inset) as suggested above by the blue shift of the Soret band. Binding of N_3 ⁻ to the mixed-valent $Fe^{3+}Cu^{+}$ complex, which has the same EPR signal as the monometallic $Fe³⁺$ complex, also leads to the growth of a new low-spin $Fe³⁺$ signal (Figure 2, green line and lower inset). The *g* values of this signal are different from those obtained from the $Fe^{3+}N_3^$ complex. This implies that the azide binding to the low-spin $Fe³⁺$ centers in these are different. The fully oxidized $Fe³⁺Cu²⁺$ state of the complex has a high-spin Fe^{3+} signal at 1150 G (Figure 2, red line; 4.5 K EPR data in Figure S2 in the Supporting Information) and a Cu^{2+} signal at 2600-3400 G. Spin quantification of this Cu^{2+} signal against a standard at 77 K accounts for $>95\%$ of the sample, indicating that the Fe³⁺ and $Cu²⁺$ centers are magnetically uncoupled. This indicates that in the fully oxidized $Fe^{3+}Cu^{2+}$ state there is no bridging ligand between the two paramagnetic centers. 11 On the other hand, binding of N_3 ⁻ leads to disappearance of the Cu²⁺ and Fe^{3+} EPR signals (Figure 2, dashed red). Thus, N_3 ⁻ binds as a bridging ligand between the $S = \frac{1}{2}$ Fe³⁺ (indicated by the absorption and FPR of the Fe³⁺N₋-complex) and $S = \frac{1}{6}$ Cu²⁺ absorption and EPR of the Fe³⁺N₃⁻ complex) and $S = \frac{1}{2}$ Cu²⁺
centers. This enables antiferromagnetic coupling between these centers. This enables antiferromagnetic coupling between these sites, leading to an EPR-silent ground state. Thus, this model successfully reproduces the bridging interactions observed in most CcO's; i.e., while in its resting $Fe^{3+}Cu^{2+}$ state, there is no bridging ligand and the heme a_3 and Cu_B can be bridged by an N_3 ⁻ ligand.^{2a,b} The bridging of the two metals with a single N_3 ⁻ implies that, even with the lack of crystallographic data, it is safe to conclude that the distances between the two metals in this model must be ∼6 Å as observed in the CcO active site.

FTIR has been used extensively to study the interaction of N_3 ⁻ with ferric porphyrin models.¹⁰ The FTIR of the N_3 ⁻ bound Fe^{3+} complex shows a N_3^- asymmetric stretch at 2010 (10) (a) Byers, W.; Cossham, J. A.; Edwards, J. O.; Gordon, A. T.; Jones, cm^{-1} (Figure 3, blue line), which corresponds to a low-spin $G:$ Kappy E. T. P.; Mahmood, A.; McKnight, J.; Swaigart, D. A.;

J. G.; Kenny, E. T. P.; Mahmood, A.; McKnight, J.; Sweigart, D. A.; et al. *Inorg. Chem.* **1986**, *25*, 4767. (b) Neya, S.; Hada, S.; Funasaki, N. I.; Umemura, J.; Takenaka, T. *Biochim. Biophys. Acta* **1985**, *827*,

⁽¹¹⁾ EPR on the fully oxidized Fe³⁺Cu²⁺ species obtained in wet CH₂Cl₂ also shows the same EPR, indicating the lack of a bridging ligand.

Figure 3. FTIR spectrum of the azide-bound complexes of the Fe^{3+} , $Fe^{3+}Cu^{+}$, and $Fe^{3+}Cu^{2+}$ complexes (*Y* axis arbitrarily scaled). The shoulder around 2010 cm⁻¹ in both the $Fe^{3+}Cu^{+}$ and $Fe^{3+}Cu^{2+}N_3^-$ complexes is due to some unconverted $Fe^{3+}N_3^-$ (Figure S4 in the Supporting Information).

 $Fe³⁺N₃$ species, as indicated by EPR data. Using a single N^{15} -substituted N_3 ⁻ (i.e., ¹⁵NNN⁻; Figure S3 in the Supporting Information), two bands are observed at 1990 and 1998 cm⁻¹.^{4a,c,12} N₃⁻ binding to the mixed-valent Fe³⁺Cu⁺ complex shows a major IR band at 2048 cm^{-1} (Figure 3, green line). This band is 38 cm⁻¹ shifted relative to the N_3 ⁻¹ band in the $Fe^{3+}N_3^-$ complex. This is consistent with a bridging N_3 ⁻ between the Fe³⁺ and Cu⁺ centers where more electron density is shifted from its N-N π ^{*}-type highest occupied molecular orbitals. This also parallels the small differences in the *g* values in the EPR spectra of the $Fe^{3+}N_3^$ complex and the mixed-valent $Fe^{3+}Cu^{+}N_{3}^{-}$ complex. With N^{15} -substituted azide, this 2048 cm⁻¹ shifts to 2033 cm⁻¹ (Figure S3 in the Supporting Information). The *ν*assym are further blue-shifted to 2068 cm^{-1} with a shoulder at 2090

 cm^{-1} in the fully oxidized $\text{Fe}^{3+}\text{Cu}^{2+}\text{N}_3$ ⁻ complex (Figure 3, red line), where, from EPR, N_3 ⁻ bridges the Fe³⁺ and Cu²⁺ centers. With $15N_3$ ⁻, the 2068 cm⁻¹ band shifts to 2054 and 2063 cm⁻¹ and the 2090 cm⁻¹ shoulder shifts to 2083 cm⁻¹ (Figure S3 in the Supporting Information).

In summary, the biomimetic models studied here indicate that N_3 ⁻ can bind in the Fe³⁺Cu⁺ (mixed-valent) as well as $Fe³⁺Cu²⁺$ (resting oxidized) states of the CcO active site. The presence of the distal metal increases the binding affinity for N_3 ⁻ because of its bridging interaction. This enhances N_3 ⁻ interaction with the Fe³⁺Cu⁺ and Fe³⁺Cu²⁺ states, making it an efficient inhibitor of CcO. This bridging between the metals results in an antiferromagnetically coupled ground state in the fully oxidized state of the active site. The terminal N_3 ⁻ binding is characterized by an IR vibration at 2010 cm⁻¹, while the bridging N_3 ⁻ is characterized by vibrations at 2048 and 2068 cm^{-1} for the mixedvalent and fully oxidized states, respectively. These results should provide benchmark features for the analysis of FTIR data obtained in a CcO active site.

Acknowledgment. This research has been funded by the NIH under Grants 5R01 GM-17880-35 and 5RO1 GM69658- 4. Somdatta Ghosh and Prof. E. I. Solomon are acknowledged for their help in EPR data collection. R.A.D. is thankful for a Lavoisier Fellowship. Dr. A. Hosseini is thanked for helpful discussions.

Supporting Information Available: The 4.5 K EPR spectra of the $Fe³⁺$ complexes, the kinetic traces of the distal metal binding, and the FTIR data in solution and with 15NNN azide. This material is available free of charge via the Internet at http://pubs.acs.org.

IC702294N

⁽¹²⁾ A single 15N-substituted azide should give rise to two *ν*assym modes of N_3 ⁻ because it could bind with either the ¹⁵N or ¹⁴N atom of the azide.